A directory of where to buy chemicals in the USA, including: distributors, industrial manufacturers, bulk supplies and wholesalers of raw ingredients & finished goods.
m-PEG3-NHS carbonate. Uses: Designed for use in research and industrial production. Product Category: Other PEG Linkers. CAS No. 477775-77-2. Molecular formula: C12H19NO8. Mole weight: 305.28. Purity: 95%+. Product ID: ACM477775772. Alfa Chemistry ISO 9001:2015 Certified.
mPEG40K-MAL
average Mn 40,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG40K-MAL
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-MAL, Methoxy-PEG-Maleimide. Molecular formula: average Mn 40000.
mPEG40K-Succinimidyl Carboxymethyl Ester
average Mn 40,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG40K-Succinimidyl Carboxymethyl Ester
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Succinimidyl Carboxymethyl Ester. Molecular formula: average Mn 40000.
M-PEG4-aldehyde
M-PEG4-aldehyde. Uses: Designed for use in research and industrial production. Product Category: Alkyl PEG Linkers. CAS No. 197513-96-5. Molecular formula: C10H20O5. Mole weight: 220.26. Purity: 95%+. Product ID: ACM197513965. Alfa Chemistry ISO 9001:2015 Certified.
m-PEG4-NHS ester
m-PEG4-NHS ester is a PEG-based PROTAC linker can be used in the synthesis of PROTACs. Uses: Scientific research. Group: Signaling pathways. CAS No. 622405-78-1. Pack Sizes: 100 mg; 250 mg; 500 mg. Product ID: HY-124323.
mPEG5-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5-Azide
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000.
mPEG5K-Alkyne
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Alkyne, Methoxy-PEG-Alkyne. Molecular formula: average Mn 5000.
mPEG5K-Alkyne
average Mn 5,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5K-Hydrazide
average Mn 5,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5K-Hydrazide
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG-HZ, mPEG-Hydrazide. Molecular formula: average Mn 5000.
mPEG5K-Isocyanate
average Mn 5,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5K-Isocyanate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Isocyanate. Molecular formula: average Mn 5000.
mPEG5K-Phosphate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 5000.
mPEG5K-Phosphate
average Mn 5000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5K-Propionaldehyde
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Propionaldehyde, mPEG-ALD, Methoxy-PEG-Propionaldehyde. Molecular formula: average Mn 5000.
mPEG5K-Propionaldehyde
average Mn 5,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5K-Silane
average Mn 5,000. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG5K-Silane
Methoxy PEG silanes are used for surface modification and deactivation of glass or silica. Uses: Bioconjugation, drug delivery, peg hydrogels, crosslinkers, and surface functionalization. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: mPEG-Silane. Molecular formula: average Mn 5,000.
mPEG5-NH2
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethanamine. Molecular formula: 251.32g/mol. Mole weight: C11H25NO5. COCCOCCOCCOCCOCCN. InChI= 1S / C11H25NO5 / c1-13-4-5-15-8-9-17-11-10-16-7-6-14-3 -2-12 / h2-12H2, 1H3. WGQYVGMCDPUCEJ-UHFFFAOYSA-N.
mPEG5-OH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethanol. Molecular formula: 252.3g/mol. Mole weight: C11H24O6. COCCOCCOCCOCCOCCO. InChI= 1S / C11H24O6 / c1-13-4-5-15-8-9-17-11-10-16-7-6-14-3 -2-12 / h12H, 2-11H2, 1H3. SLNYBUIEAMRFSZ-UHFFFAOYSA-N.
mPEG5-SH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethanethiol. Molecular formula: 268.37g/mol. Mole weight: C11H24O5S. COCCOCCOCCOCCOCCS. InChI= 1S / C11H24O5S / c1-12-2-3-13-4-5-14-6-7-15-8-9-16-10- 11-17 / h17H, 2-11H2, 1H3. PNMCHSOJDWEEKK-UHFFFAOYSA-N.
mPEG6-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide).
mPEG6-Azide
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: imino- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethylimino] azanium. Molecular formula: average Mn 6000. Mole weight: C13H28N3O6+. COCCOCCOCCOCCOCCOCCN=[N+]=N. InChI= 1S / C13H28N3O6 / c1-17-4-5-19-8-9-21-12-13-22-11-10-20 -7-6-18-3-2-15-16-14 / h14H, 2-13H2, 1H3 / q + 1. KZFRTKCDHGYEIH-UHFFFAOYSA-N.
mPEG6-NH2
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethanamine. Molecular formula: 295.37g/mol. Mole weight: C13H29NO6. COCCOCCOCCOCCOCCOCCN. InChI= 1S / C13H29NO6 / c1-15-4-5-17-8-9-19-12-13-20-11-10-18 -7-6-16-3-2-14 / h2-14H2, 1H3. JDTWBXXBTWYNAT-UHFFFAOYSA-N.
mPEG6-OH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG6-Hydroxyl. Product ID: 2-[2-[2-[2-[2- (2-methoxyethoxy) ethoxy]ethoxy]ethoxy]ethoxy]ethanol. Molecular formula: 296.36g/mol. Mole weight: C13H28O7. [H]OCCOC. 1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3. XNWFRZJHXBZDAG-UHFFFAOYSA-N.
mPEG6-Propionic acid
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 3- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] propanoic acid. Molecular formula: 368.42g/mol. Mole weight: C16H32O9. COCCOCCOCCOCCOCCOCCOCCC(=O)O. InChI= 1S / C16H32O9 / c1-19-4-5-21-8-9-23-12-13-25-15-14-24 -11-10-22-7-6-20-3-2-16 (17) 18 / h2-15H2, 1H3, (H, 17, 18). NOPQIPMESCUIHH-UHFFFAOYSA-N.
mPEG6-SH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethanethiol. Molecular formula: 312.42g/mol. Mole weight: C13H28O6S. COCCOCCOCCOCCOCCOCCS. InChI= 1S / C13H28O6S / c1-14-2-3-15-4-5-16-6-7-17-8-9-18-10- 11-19-12-13-20 / h20H, 2-13H2, 1H3. FCNSUDTWFXNQBG-UHFFFAOYSA-N.
mPEG7-Acrylate
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide).
M-PEG7-aldehyde
M-PEG7-aldehyde. Uses: Designed for use in research and industrial production. Product Category: Alkyl PEG Linkers. CAS No. 1058691-77-2. Molecular formula: C16H32O8. Mole weight: 352.42. Purity: 95%+. Product ID: ACM1058691772. Alfa Chemistry ISO 9001:2015 Certified.
mPEG7-Azide
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and reduced antigenicity. in addition to pegylation, activated peg derivatives can also be used to form networks for tissue engineering or drug delivery applications, depending on the architecture and reactivity. Group: Poly(ethylene glycol) and poly(ethylene oxide). Molecular formula: average Mn 7000.
mPEG7-NH2
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanamine. Molecular formula: 339.42g/mol. Mole weight: C15H33NO7. COCCOCCOCCOCCOCCOCCOCCN. InChI= 1S / C15H33NO7 / c1-17-4-5-19-8-9-21-12-13-23-15-14-22 -11-10-20-7-6-18-3-2-16 / h2-16H2, 1H3. IQQSLHPGFFGOJW-UHFFFAOYSA-N.
mPEG7-OH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Alternative Names: Methoxy-PEG7-Hydroxyl. Product ID: 2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanol. Molecular formula: 340.41g/mol. Mole weight: C15H32O8. [H]OCCOC. 1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3. XNWFRZJHXBZDAG-UHFFFAOYSA-N.
mPEG7-Propionic acid
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 3- [2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] propanoic acid. Molecular formula: 412.5g/mol. Mole weight: C18H36O10. COCCOCCOCCOCCOCCOCCOCCOCCC(=O)O. InChI= 1S / C18H36O10 / c1-21-4-5-23-8-9-25-12-13-27-16-17-28 -15-14-26-11-10-24-7-6-22-3-2-18 (19) 20 / h2-17H2, 1H3, (H, 19, 20). JHUSQXBQANBSDC-UHFFFAOYSA-N.
mPEG7-SH
Polyethylene glycol (PEG) compounds contain a polyether unit, commonly expressed as R1-(O-CH2-CH2)n-O-R2. They are generally biocompatible, non-toxic and stable in both organic and aqueous solutions, and so are extensively used in biological applications, as well as nanotechnology and materials research. Proteins with PEG chain modifications and compounds encapsulated in PEG liposomes exhibit a longer half-life in vivo than their non-PEGylated counterparts, a phenomenon known as PEG shielding. Functionalised PEG lipids and phospholipids can be used for protein-PEG conjugation. Uses: Activated peg derivatives can be used to modify peptides, proteins, or in other bioconjugation applications. pegylated materials have found broad use in drug delivery systems, virology, and immunology, as the incorporation of peg improves pharmacological properties such as increased water solubility, enhanced resistance to degradation (protein hydrolysis), increased circulation half-life, and redu. Group: Poly(ethylene glycol) and poly(ethylene oxide). Product ID: 2- [2- [2- [2- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethanethiol. Molecular formula: 356.5g/mol. Mole weight: C15H32O7S. COCCOCCOCCOCCOCCOCCOCCS. InChI= 1S / C15H32O7S / c1-16-2-3-17-4-5-18-6-7-19-8-9-20-10- 11-21-12-13-22-14-15-23 / h23H, 2-15H2, 1H3. PVSKDHZQTUFAEZ-UHFFFAOYSA-N.
mPEG-AA
According to public information, mPEG-AA (mPEG-CM) is one of the excipients of Pfizer's and Moderna's COVID-19 vaccine. Product ID: PE-0343. Category: Excipients. Product Keywords: Pharmaceutical Excipients; Excipients; mPEG-AA; PE-0343. Sample Provided: Yes. Standard: In-house standard. Grade: Pharmaceutical grade.
mPEG-alginate
mPEG-alginate,methoxypolyethylene glycol-alginate is an AB block copolymer,Chitosan is a Natural polysaccharide can be used for drug delivery systems. Synonyms: methoxy polyethylene glycol-alginate. Product ID: MSMN-054. Category: Raw Materials.
mPEG-amine (MW 2000)
mPEG-amine (mPEG-NH2) (MW 2000) is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs [1]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: mPEG-NH2 (MW 2000). CAS No. 80506-64-5. Pack Sizes: 50 mg; 100 mg. Product ID: HY-140676.
mPEG-amine (MW 5000)
mPEG-amine (mPEG-NH2) (MW 5000) is a modifier that can replace the sulfonic acid portion of the dye molecule to increase the water solubility of long-wavelength voltage-sensitive dyes (VSD) or Pittsburgh (PGH) dyes. mPEG-amine can also form amide bonds with carboxyl groups on the surface of microspheres under the mediation of EDC and Sulfo-NHS to form a PEG coating on the surface of fluorescent microspheres for large-scale rotational cytoplasmic flow studies [1] [2]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: mPEG-NH2 (MW 5000). CAS No. 80506-64-5. Pack Sizes: 100 mg; 250 mg. Product ID: HY-140677.
mPEG-b-PLA (2k-5k)
mPEG-b-PLA is a biodegradable diblock copolymer. Uses: Msmn-087. Synonyms: Methoxy poly(ethylene glycol)-b-poly(D,L-lactide). Grades: Raw Materials.
mPEG-b-PLA (2k-5k)
mPEG-b-PLA is a biodegradable diblock copolymer. Synonyms: Methoxy poly(ethylene glycol)-b-poly(D,L-lactide). Product ID: MSMN-087. Category: Raw Materials.
Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-036. Category: Raw Materials.
Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-034. Category: Raw Materials.
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 10,000)
Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-042. Category: Raw Materials.
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 15,000)
Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-041. Category: Raw Materials.
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 20,000)
Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-035. Category: Raw Materials.
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 5,000)
Contains ≤500 ppm impurities by GC, including trace monomer and residual organics. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-038. Category: Raw Materials.
mPEG-b-PLGA (PEG Mn 5,000, PLGA Mn 7,000)
Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part. Synonyms: Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide). Product ID: MSMN-037. Category: Raw Materials.
mPEG-Chitosan,methoxypolyethylene glycol-Chitosan is an AB block copolymer,Chitosan is a Medicinal polysaccharide polymer can be used for drug delivery systems. Synonyms: methoxy polyethylene glycol-Chitosan. Product ID: MSMN-053. Category: Raw Materials.
m-PEG-DMG (MW 2000) is a PEG lipid for the preparation of liposomes and can be used in drug delivery studies [1]. Uses: Scientific research. Group: Biochemical assay reagents. CAS No. 1019000-64-6. Pack Sizes: 5 mg; 10 mg. Product ID: HY-W440821.
m-PEG-NHS ester (MW 5000) is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs[1]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: mPEG-SC (MW 5000); mPEG-Succinimidyl ester (MW 5000). CAS No. 92451-01-9. Pack Sizes: 50 mg; 100 mg. Product ID: HY-140698.
mPEG-PCL-PPEEA
PCL has good compatibility and good solvent solubility,especially in aromatic compounds,ketones and polar solvents.It is widely used in controlled release drug carrier,cell and tissue culture medium. Synonyms: methoxy polyethylene glycol-Poly(ε-caprolactone)-PPEEA. Product ID: MSMN-063. Category: Raw Materials.
mPEG-PLA-PPEEA
Polylactic acid (PLA) is a kind of non-toxic,non irritating synthetic polymer material with excellent biodegradability,compatibility and absorbability.It can be used as drug transport material and tissue engineering scaffold material. Synonyms: methoxy polyethylene glycol-Poly(D,L-lactide)-PPEEA. Product ID: MSMN-064. Category: Raw Materials.
mPEG-PLGA
mPEG-PLGA is a mucus-penetrating polymer. mPEG-PLGA is a raw material to prepare nanomedicine [1]. Uses: Scientific research. Group: Signaling pathways. CAS No. 743423-15-6. Pack Sizes: 5 mg; 10 mg. Product ID: HY-164077.
m-PEG-thiol (MW 1000)
m-PEG-thiol (MW 1000) is a surface modifier that can modify DNA thiolation and is used in the synthesis of gold nanorods (AuNR). m-PEG-thiol (MW 1000) can load thiolated DNA onto AuNR, form a covalent bond with the surface of gold nanoparticles through the thiol group, and stabilize the nanoparticles by the steric hindrance effect of the polyethylene glycol chain, preventing aggregation and enhancing its biocompatibility. m-PEG-thiol (MW 1000) can also provide a platform for the subsequent coupling of biomolecules (such as DNA, antibodies) by replacing surfactants (such as CTAB) on the surface of nanoparticles, thereby exerting its activity in promoting the functionalization of nanomaterials[1][2]. Uses: Scientific research. Group: Biochemical assay reagents. Alternative Names: mPEG-SH (MW 1000). CAS No. 134874-49-0. Pack Sizes: 50 mg; 100 mg. Product ID: HY-W591476.
MPEP
MPEP is a selective mGlu5 receptor antagonist with IC50 of 36 nM, exhibiting no appreciable activity at mGlu1b/2/3/4a/7b/8a/6 receptors. Grades: >98%. CAS No. 96206-92-7. Molecular formula: C14H11N. Mole weight: 193.24.
MPEP
MPEP is a potent, selective, noncompetitive, orally active and systemically active mGlu5 receptor antagonist, with an IC 50 of 36 nM for completely inhibiting quisqualate-stimulated phosphoinositide (PI) hydrolysis. MPEP has anxiolytic-or antidepressant-like effects [1] [2]. MPEP is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Uses: Scientific research. Group: Signaling pathways. CAS No. 96206-92-7. Pack Sizes: 10 mM * 1 mL; 5 mg; 10 mg; 25 mg; 50 mg; 100 mg. Product ID: HY-14609A.
MPEP hydrochloride
MPEP hydrochloride. Group: Biochemicals. Grades: Purified. CAS No. 219911-35-0. Pack Sizes: 10mg, 50mg. US Biological Life Sciences.
Worldwide
MPEP Hydrochloride
Potent and selective antagonist for metabotropic glutamate receptor subtype 5 (mGluR5); Systemically active in vivo. Synonyms: 2-Methyl-6-(phenylethynyl)pyridine Hydrochloride. Grades: >98%. CAS No. 219911-35-0. Molecular formula: C14H12ClN. Mole weight: 229.7.
MPEP Hydrochloride
MPEP Hydrochloride is a potent, selective, noncompetitive, orally active and systemically active mGlu5 receptor antagonist, with an IC 50 of 36 nM for completely inhibiting quisqualate-stimulated phosphoinositide (PI) hydrolysis. MPEP Hydrochloride has anxiolytic-or antidepressant-like effects [1] [2]. MPEP (Hydrochloride) is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Uses: Scientific research. Group: Signaling pathways. CAS No. 219911-35-0. Pack Sizes: 10 mM * 1 mL; 5 mg; 10 mg; 25 mg; 50 mg; 100 mg. Product ID: HY-14609.
A non-competitive, highly potent antagonist selective for mGlu5 receptors (IC50 = 36nM). Also a positive allosteric modulator of mGlu4 and weak anatagonist of nMDA receptors. Biologically active admitted systematically. Widely used in assessing the functional roles of mGlu5 receptors in a variety of research areas, such as learning and memory, sleep, neuroprotection, depression, addiction, anxiety and stress related disorders, analgesia, locomotion, neural plasticity, and Parkinson's disease. Group: Biochemicals. Grades: Highly Purified. CAS No. 96206-92-7. Pack Sizes: 10mg. US Biological Life Sciences.
Worldwide
MPGΔNLS, HIV related
It is a 27-residue peptide derived from the hydrophobic fusion peptide of HIV-1 gp41 (for efficient crossing of the cell membrane) and the hydrophilic nuclear localization sequence of SV40 large T antigen (for the nuclear addressing of the peptide). It contains a single mutation in which the second lysine in NLS has mutated to serine. Synonyms: H-Gly-Ala-Leu-Phe-Leu-Gly-Phe-Leu-Gly-Ala-Ala-Gly-Ser-Thr-Met-Gly-Ala-Trp-Ser-Gln-Pro-Lys-Ser-Lys-Arg-Lys-Val-OH. Grades: 97%. Molecular formula: C126H201N35O33S. Mole weight: 2766.27.
MPH
MPH. Pack Sizes: Milligram Quantities: 50 mg. Order Number: CL230.